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STEADY-STATE AND TRANSIENT ZENER PARAMETERS IN VISCOPLASTICITY:

DRAG STRENGTH VERSUS YIELD STRENGTH
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National Aeronautics and Space Administration
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Cleveland, Ohio 44135

and

K.P. Walker

Engineering Science Software
Smithfield, Rhode Island 02917

A hypothesis is put forth which enables the viscoplastician to formu-
late a theory of viscoplasticity that reduces, in closed form, to the

classical theory of creep. This hypothesis is applied to a variety of
drag and yield strength models. Because of two theoretical restric-
tions that are a consequence of this hypothesis, three different yield
strength models and one drag strength model are shown to be
theoretically admissible. One of these yield strength models is
selected as being the most appropriate representation for isotropic
hardening.

I. INTRODUCTION

Over the past two decades, development of internal state

variable theories of viscoplasticity has been an active topic of

research (eft Freed and Chaboche (1989) for a bibliography).

Much of this activity has been centered around what the evolu-

tion equations for internal state should look like. This paper

attempts to address a more fundamental question. There are

two different isotropic variables that can be found in the vari-

ous viscoplastic models published in the literature; they are,

the drag strength and the yield strength. Which one of these

variables provides the most appropriate representation of iso-

tropic hardening? An objective of this paper is to answer that

question. Another objective is to formulate a viscoplastic

theory that reduces, in closed form, to the classical theory of

creep at steady state. In our efforts to meet the second objec-

tive, the first objective is also met.

II. ELASTIC-VISCOPLASTIC CONTINUA

Small material displacements and rotations are assumed

to make up the deformation of an elastic-viscoplastic contin-

uum. In a Cartesian reference configuration, the infinitesimal

strain E;j is taken to be composed of elastic _. (thermo-
dynamically reversible - includes thermal sta'ain) and inelastic

or plastic _ (thermodynamically irreversible) parts such that

with no elastic or inelastic strain occurring in the stress-free

virgin state. Every material dement in its virgin state is

assumed to be isotropic. Constancy of volume due to inelastic

deformation requires the trace of inelastic strain to be zero

valued. Here repeated Latin indicies are summed from 1 to 3

in the usual manner.

The constitutive equation characterizing the thermoelas-

tic behavior of an isotropic continuum is given by

E - o_ - Ix A 5o (2)

where Oq is the Cauchy stress, and To is the reference tem-

perature with AT = T - To. Here E is the elastic modulus,

v is the Poisson ratio, and Ix is the coefficient of thermal

expansion. The Kronecker delta 8q has either the value 1

whenever i = j or the value 0 whenever i # j.

The stress dependence of inelastic flow is strongly

influenced by the material's anisotropy, which may be either

inherent, or flow-induced, or both. In this paper only flow-

induced anisotropy is addressed, and it is introduced after the

manner of Prager (1949). This is done through an internal vari-

able Bq called the back (internal or equilibrium) stress,

which is a symmetric and traceless (i.e., deviatoric) tensor. To

assure material isotropy in the virgin state,

Be[virgin state] = 0. Square brackets [.] are used herein to
denote "function of".

von Mises (1928) introduced the concept of an inelastic

potential F for describing the flow of inelastic strain, which

we write here as

3F (3)

where BFI3o 0 defines the direction (in unit length) of inelas-

tic straining, with I_'1 providing its magnitude. The

existence of this potential followed naturally from yon Mises

(1913) prior definition of yield, which is equivalent to intro-

ducing a second-invariant (or quadratic) norm that we write as



III - _-7,jltl , IJI = 33__TijJjl (4)

where lit is any strain-like tensor (eg., e_), and J_j is any

stress-like tensor (eg., Sit - Bij, where Sit = t_ii - (oal3)Sii

is the deviatoric stress). More recently, Rice (1971) demon-

strated the physical existence of such a potential function

based upon the mechanics and thermodynamics of dislocation

slip. Most plastic and viscoplastic models take F = t S - B I,

and therefore Eqn. 3 becomes

3 S U - Bij

k_ = _1:1 IS-b-[ (5)

which is compatible with the kinematic constructs proposed by

Prager (1949) in his plasticity model• The choice of this partic-

ular inelastic potential, F, provides a reasonable approximation

to the actual shapes of observed yield and flow surfaces (cf.

Clinard and Lacombe (1988)). The norms defined in Eqn. 4 are

scaled for tension. They could have just as easily been scaled

for shear by replacing the coefficients that appear under the

radical signs with a 2 for lli and a 1/2 for J;i"

Zener and Hollomon's (1944) experimental results

demonstrate that the functional dependence for the magnitude

of inelastic strain rate I _1 can, to a good approximation, be

decomposed into the product of functions

I _[T, S 0, q_] I = 0IT] Z[S_j, qld > 0 (6)

where 0 > 0 is the thermal diffusivity, Z > 0 is the Zener

parameter, and q_ is a set of independent internal state vari-

ables (to be defined shortly). The thermal diffusivity is often

represented as an Arrhenius function of temperature, which is

valid over a significant and specifible temperature range (cf

Miller (1976)). The functional dependence of the Zener param-

eter is of particular interest to us in this paper. This parameter

is a temperature normalized function for the magnitude of ine-
lastic strain rate.

In addition to the kinematic variable, or back stress Bij,

there are two isotropic variables introduced into the general

structure of our Zener parameter; they are the drag (or friction)

strength D > 0 and the yield (or threshold) strength Y > 0.

These three internal variables interact with the deviatoric stress

Sij in such a way that the Zener parameter of Eqn. 6 is con-

sidered to have the following functional dependence

o =

= le'l_>0 (7)
0

with Z[0]=0 (cfi Freed and Chaboche (1989)). Here

or-IS -BI- Y is the viscous stress (or overstress) that

governs inelastic material response. The Macauley bracket

< or> has either a value of 0 whenever IS-B}< Y

(defining the elastic or reversible domain) or a value of o v

whenever I S - B I > Y (defining the inelastic or irreversible

domain), with I S - B i = Y establishing the yield surface.

Viscoplasticity (a rate dependent theory) admits states within

the yield surface, on the yield surface, and outside the yield

surface. Plasticity (a rate independent theory), on the other

hand, only admits states within and on the yield surface; it

does not admit states outside the yield surface. The expression

for the Zener parameter given above is very general, and

includes three important special cases: i) viscoplastic theories

without a yield surface (i.e., Y = 0), iO viscoplastic theories

with a yield surface and no evolving drag strength (i.e.,

D = constant), and iiO viscoplastie theories where the drag

and yield strengths are equivalent (i.e., D - Y).

1. Steady-state creep

Steady-state creep is an important limiting case of the
.¢

viscoplastic representation given above. Let the creep rate i_ij

be an equivalent expression for the steady-state inelastic

•P where the indicies ss denote steady state.strain-rate E,-jas,

Considering the inelastic potential F,, = I SI, one obtains from

Eqn. 3 the flow equation

• _ 3 SO" (8)e,.j = ¥1_1 IsI

which is a representation of Odqvist's (1936) theory for creep.

For Eqn. 8 to in fact be a limiting case of Eqn. 5, it is neces-

sary that the back stress B 0 be coaxial with the deviatoric

stress S O at steady state, as observed in the experimental

results of Blass and Findley (1971). This provides a physical

constraint that every admiss_le evolution equation for back

stress must satisfy.

Since steady-state creep is but a limiting ease of visco-

plasticity, the Zener-Hollomon (1944) decomposition of the

magnitude of inelastic strain-rate, Eqn. 6, must also apply at

steady state, but now there is no dependence on internal state,
viL

I _[T, So] I = 0[T] Z,[Sii] (9)

More specifically, we shall consider the stress dependence for

the steady-state Zener parameter as having the general form

with Z_,[0] = 0, and where A > 0 is a material constant.

Common expressions for Z. include: the power-law

representation of Norton (1929), Z,_ = (I SI/A)"; the exponen-

tial representation of Dorn (1954), Z, = exp(i SI/A )--1; and the

hyperbolic sine representation of Garofalo (1963),

Zss = sin_k'([ S[/A ). Here the exponent n has a value of

about 5 (cf Sherby et al. (1977)), and the value of A will

differ between these representations. The Norton relation

applies to situations at lower stress states (typically associated

with the higher temperature environments); whereas, the Dom

relation applies to situations at higher stress states (typically

associated with the more moderate temperature environments).

The Garofalo relation retains both the Norton and Dorn rela-

tionships as its infimum and extremum, respectively.

2. The hypothesis

A hypothesis is put forth which enables one to formu-

late a theory of viscoplasticity that reduces, in closed form, to

the classical theory of creep under conditions of steady state,

This hypothesis is: the transient Zener parameter Z has the

same functional form as the steady-state Zener parameter Z,,

but with a different argument, viz.



with f [0] = O. This paper addresses the question: what are

some of the admissible functional forms for f; however, it
does not discuss in any detail what the functional forms for

Z_, might be. In addition to our hypothesis, it is also assumed

that the back and deviatoric stresses are proportional at steady

state; in particular, that

IBIs, = b l SI (12)

where b e (0,1) is the proportionality factor. Typically,

b = 0.4 and does not vary much from material to material (cf.

Gibeling and Nix (1982), and Freed and Walker (1989)). Equa-
tion 12 is a constraint relation that must be taken into account

when developing an admissible evolution equation for back

stress, as demonstrated in §IV.

At steady state, the arguments of Eqns. 10 and 11 must

be equal to one another; therefore, using Eqn. 12, one obtains

the identity

f ,, = f[(1-b)lSI-Y,,] =D., I SIA (13)

where we have also used the previous result (or constraint) that

the back stress has to be coaxial with the applied stress at

steady state.

Within the context of the two assumptions given in

Eqns. 11 and 12, there are two theoretical restrictions that the

transient function f must satisfy for it to be physically

sound, and therefore admissible, independent of whether or not

it can correlate data. First, values for the isotropic variables in

the virgin state, D Oand Y0, defined by the limits

Do = lim D_, and Y0 -- lim Y,, (14)
ISl-_ 0 ISl_0

must satisfy the inequalities Do > 0 and Y0 > 0. Physically,

the virgin state is attained by annealing the material at a very

high homologous temperature in the absence of external trac-

tions. Second, steady-state values for these isotropic variables

must monotonically increase with increasing stress at rates that

are finite. Physically, Taylor (1934) determined that strength

increases as the square root of dislocation density. Since the

isotropie variables are phenomenological measures of disloca-

tion density, their steady-state values should therefore mono-

tonically increase with stress.

lII. TRANSIENT FUNCTIONS

Ten different functional forms for the transient function

f of Eqn. 11 are presented in this section. Three viscoplastic

models take the drag strength to be the isotropic variable. Four

viscoplasdc models take the yield strength to be the isotropic

variable, after the manner of Chaboche (1977). And three

viscoplastic models take the drag and yield strengths to be

equivalent to one another, after the manner of Perzyna (1964).

There are four different functional forms for f applied to

each of the three drag and yield strength representations; they

are: linear, power law, exponential, and hyperbolic sine rela-

tionships. It is worth noting that the conclusions arrived at

herein are independent of one's choice for the functional form

for Z_,, of which f is its argument in our transformation to

obtain Z by hypothesis.

1. Linear models

The most common functional form for the transient

function f used in viscoplastic models today is a linear rela-

tionship. However, in none of these models, to the best of our

knowledge, is there an attempt to constrain the evolution equa-

dons so that their transient viscoplastic theory reduces, in

closed form, to the classical theory of creep under steady-state
conditions.

1.1 A drag model

This model assumes that there is no yield surface (i.e.,

Y = 0), and that the transient function f is linear in its argu-

ment, viz.

f = f/SDL_I = IS-BID (15)

When the steady-state form of this equation is combined with

Eqn. 13, one obtains the constraint equation

D,, = A (1- b) (16)

implying that the steady-state value of drag strength is

independent of the applied stress. This expression lacks physi-

cal interpretation since it does not monotonically increase with

stress, and therefore Eqn. 15 is not acceptable on physical

grounds.

1.2 A Chaboche type yield model

A Chaboche type yield surface is assumed in this linear

model for the transient function f (therefore,

D = constant > 0) such that

f = f[<IS-BI-Y>] <IS-BI-Y>D = D (17)

which when combined with Eqn. 13 under steady-state condi-
tions results in

Y_j = IA (l-b) /)1 IS[ (18)
t. ) A

Like the constraint equation for steady-state back stress given

in Eqn. 12, this constraint equation for steady-state yield

strength is also linear in stress. Linearity is advantageous when

one goes about developing an admissible evolution equation

for yield strength, as discussed in §IV. In Eqn. 18, the drag

strength D is observed to be a parameter establishing proper-

tionality between Y,_ and I S [. Assuming that Y_, is about

5% of [S[, it follows then that D =0.9A(1-b). Notice

that whenever D =A(1-b), one finds that Y_ =0

independent of the stress state. But this is physically unaccept-

able for the same reason that the expression for Ds, is unac-

ceptable in the previous model, i.e. it is in violation with the

physics of Taylor (1934).

For the two theoretical restrictions, the value of yield

strength in the virgin state, defined in Eqn. 14, is

Y0 = 0 (19)

which is an acceptable result. Also, the derivative of Eqn. 18

with respect to stress given by

dYn O

d[S[ - 1-b---_ > 0 (20)

is non-negative and finite valued, provided that



D <A(1 -b), which is an upper bound on D. Recall from

the previous paragraph that D ¢A(I -b) for physical rea-

sons. Consequently, because both Eqns. 19 and 20 are

satisfied, the yield surface model for f given in Eqn. 17 is

theoretically acceptable.

1.3 A Perzyna type yield model

A Perzyna type yield surface is assumed in this linear

model for the transient function f (therefore. D - Y) such
that

f = f[<IS -B,-DD >] = <[S-B[-D >(21)D

At steady state, combining this relation with Eqn. 13 results in

D, = A (1 - b) l sl (22)
A +ISI

which is a constraint equation that must be taken into account

if one is to develop an admissible evolution equation for drag

strength.

For the first theoretical restriction, the value of drag

strength in the virgin state, defined in Eqn. 14, is determined
tobe

Do = 0 (23)

which is not acceptable. The second restriction requires that

dD, A(I_ b) I IS[ 1>0 (24)dlSI = A +[S-_ 1 A +ISI -

which is acceptable, since it is non-negative and finite valued.

Consequently, because Eqn. 23 is not acceptable, the yield sur-

face model for f given in Eqn. 21 is inadmissible.

2. Power-law models

Suggested by the fact that steady-state and constant-

structure (i.e. transient) creep data exhibit different power-law

stress dependencies (cf Sherby et al. (1977)), Miller (1976)

proposed that the transient function f should be a power-law

function. Here again, we shall consider both drag and yield

strength models. We shall also propose a theoretically admissi-

ble, convoluted, yield strength model.

2.1 A drag model

A power-law was used by Miller (1976) for f in his

original viscoplastic theory, wherein he also used Garofalo's

(1963) hyperbolic sine relationship for Z,. Here the transient

function f (a power-law model with no yield surface, i.e.,

Y = 0) is defined as

/ = = (25)

where the exponent m (the constant structure exponent

divided by the steady-state exponent, see Fig. 1) has a typical

value of m = 1.5. Like b, this typical value for m does not

vary much from material to material (cf. Sherby et al. (1977)).

It therefore follows from Eqns. 13 and 25 at steady-state that

D,, = A (1-b) (26)

which is a constraint, like Eqn. 12, that must be taken into

STRAIN

RATE,
s-1

10-3

10-4

10-5

1O-6

10-7
0.7

SERVI-GRANT(1951)

GIBELING-NIX(1982)
o CONSTANT STRUCTURE
[] STEADY STATE

_-.-1 t I I

ALUMINUM
400 °C

- /

- /
-1tl _ t

1 2

I I I AI-=

I I I 1

3 4567

STRESS, MPa

FIG. 1. Log stress vs. log strain-rate (power-law stress depcm-

dence) of steady+state and constant-structure creep data.

account if one is to develop an admissible evolution equation

for drag strength (cf. Miller (1976), and Freed and Walker

(1989)). In the development of Miller's model, Eqn. 26 was

first proposed (and substantiated by data from warm worked

materials), from which Eqn. 12 was then derived.

For the first theoretical restriction, the value of drag

strength in the virgin state, defined in Eqn. 14, has the value

D0 = 0 (27)

which must be positive-valued because of physical arguments,

but it is not. For the second theoretical restriction, the deriva-

tive of Eqn. 26 with respect to stress given by

dD,_ (m - 1) A =
dlSI - (l-b) m > 0 (28)

must be non-negative valued, which it is, but it is not finite

valued. Even though this derivative implies that the steady-

state value of drag strength monotonically increases with

increasing stress, the slope becomes infinite as the stress

approaches zero, which is not acceptable. Since neither Eqns.

27 or 28 are desirable results, the drag strength model for f

given in Eqn. 25, although simple, is not considered to be

acceptable.

The remaining models for the transient function f

have not appeared in the literature, to the best of our

knowledge.

22 A Chaboche type yield model

Again we take the transient function f to be a power-

law of its argument, but this time we consider

D = constant > 0, thereby resulting in a Chaboche type yield

4



surface model

lo
where once again the exponent has a typical value of

m = 1.5. By combining Eqns. 13 and 29 under steady-state

conditions, one obtains the relationship

Jail:Y,, = A (l-b)_ - D " (30)

which, like Eqn. 26 of the previous model, is a constraint that

must be taken into account if one is to develop an admissible

evolution equation for yield strength.

For the first theoretical restriction, the value of yield

strength in the virgin state, defined in Eqn. 14, has the value

Y0 = 0 (31)

which must be non-negative valued, and it is. However, the

derivative of Eqn. 30 with respect to stress (the second theoret-

ical restriction) given by

dY_ D A -'_

d lSl = l-b-_ (32)

is negative valued over the stress range from I SI = 0 to

I SI=A(D/(mA(I-b))) _m-t). This implies that the yield

strength has negative values (because of Eqn. 31) in a specifa-

ble neighborhood of the virgin state, which obviously is not

correct. Therefore, the yield strength model for f given in

Eqn. 29 is not acceptable, either.

23 A Perzyna type yield model

Here a Perzyna type yield surface model is considered

where the transient function f is a power-law model, i.e.

where the exponent m has the same value as before. There-

fore, by combining the steady-state form of Eqn. 33 with Eqn.
13, one obtains

D,, = (1 - b) J S I (34)

1 +

as the constraint equation for steady-state drag strength.

For the two theoretical restrictions, drag strength in the

virgin state, as defined by Eqn. 14, has the value

Do = 0 (35)

which is unacceptable, because it is zero valued. However, the

derivative of steady-state drag strength with respect to stress,

given by

dD_, 1 - b
- x

m

x 1 - 2 0 (36)

is acceptable, because it is non-negative and finite valued.

Nevertheless, since the first restriction is not satisfied, the yield

strength model for f given in Eqn. 33 is inadmissible, too.

2.4 A convoluted yieM model

In this model, we convolute the yield strength formula-

tion in Eqn. 29 in such a way that there is no stress range over

which dg,,/dl SI is negative valued; thereby, resulting in a

theoretically admissible model. Considering the transient func-

tion

f = f[IS-BI, D,Y] =

IA,:::,]'-'[ ]"_ 1 ) < I S - B l- r > (37)
D

one then obtains the following expression for the steady-state

yield strength, i.e.

Y_, = [A (l-b) - D] ISI (38)
t. J A

where Eqn. 12, and the fact that the back and applied stresses

must be coaxial at steady state, were used in its derivation.

This is the same expression for the steady-state value of yield

strength given earlier in Eqn. 18; hence, the two theoretical

restrictions given in Eqns. 19 and 20 also apply here. Conse-

quently, the yield surface model for f defined in F_,qn. 37 is

theoretically acceptable, and it is the only power-law expres-

sion for f of those considered herein that is acceptable.

Because D is near in value to A(1 - b), Eqn. 37 will not be

very sensitive to the value of m, and therefore a simplifying

value of m = 2 is suggested.

3. Exponential models

Gibeling and Nix (1982) performed a detailed experi-

mental study on aluminum to answer the following question:

what is the appropriate stress dependence of transient creep?

Their results are presented in Fig. 1. Because these data are for

one temperature, the recorded strain-rate values are propor-

tional to their associated Zener values. Over the stress range

considered therein, the steady-state creep rates are adequately

described by a power-law (or Norton (1929)) stress depen-

dence with an exponent of 4.4, as shown in Fig. 1. The con-

stare structure (or transient) data can also be described by a

power-law stress dependence with an exponent of 6.8, but only

over a limited range in stress, as also seen in Fig. 1. t This

results in a value for the exponent m in Eqns. 25, 29 and 33

i The constant structure data reported in Figs. 1 and 2 arc

from isothermal experiments that began as creep tests at a fixed
level of stress (4.82 MPa at 400°C), and which were crept into

steady state (21 percent true strain). At that point, these speci-

mens underwent a quick step reduction in stress (each of a

different degree), and the ensuing strain rates were recorded.



of m = 6.8/4.4 = 1.5. However. as is also shown in this

figure, the constant structure exponent increases in value to 9

or 10 for small stress reductions. Consequently, the transient

data of Gibeling and Nix (1982) are better described by an

exponential relationship, as shown in Fig. 2. Later, Nix and

Gibeling (1985) gave a physical interpretation for the exponen-

tial stress dependence of constant structure.

3.1 A drag model

Taking the t_ansient function f to be an exponential

of its argument, in accordance with Figs. 1 and 2, and assum-

ing that there is no yield surface (i.e., Y = 0), results in the

model

By combining Eqns. 13 and 39 under steady-state conditions,

one obtains the result

`4 (l-b) Isl
,4

which is a constraint that must be taken into account if one is

to develop an admissible evolution equation for drag strength.

Such a development requires taking the inverse of this func-

tion. i.e. expressing I SIIA as a function of D,,, as demon-

strated in §IV.

The value of the drag strength in the virgin state, as

defined in Eqn. 14, is determined to be

D0 = A (1- b) (41)

which is positive valued, as it must be. Likewise, the deriva-

tive of Eqn. 40 with respect to stress given by

dD,, 1 - b

dlSl

× I- A

I+ In I+

is non-negative and finite valued,

theoretical restrictions are satisfied,

f given in Eqn. 39 is admissible.

3.2 A Chaboche type yield model

Here a transient function f

x

÷]t>0
as it must be. Since both

the drag strength model for

is considered which con-

tains a Chaboche type yield surface where the drag strength

does not evolve (i.e. D = constant > 0), and is an exponential

of its argument, viz.

f = f[<,S-B,-YD >] =

[ <'S -BI- Y >] -1 (43)= exp D
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FIG. 2. Stress vs. log strain-rate (exponential stress depen-
dence) of steady-state and constant-structure creep data.

By combining Eqns. I3 and 43 under steady-state conditions,

one obtains the relationship

Y,, = a (l-b)ISI- DA ln[l+ A'L_I"1 (44)

which is a constraint that must be taken into account if one is

to develop an admissible evolution equation for yield strength.

Such a development requires taking the inverse of this func-

tion, which is tricky, but can be done, as demonstrated in §IV.

For the theoretical restrictions, the value of yield

strength in the virgin state, as defined in Eqn. 14, is

Y0 = 0 (45)

which is non-negative valued, as it must be. Also, the deriva-

tive of Eqn. 44 with respect to stress given by

dYss D
-- = 1- b >_ 0 (46)
dl SI A + ISI

is positive and finite valued, provided that D < A (I- b),

which is an upper bound on D. Consequently, the yield

strength model for f presented in Eqn. 43 is theoretically

acceptable, too.

3.3 A Perzyna type yield model

Finally, we consider a transient function f that con-

tains a Perzyna type yield surface (i.e. D = Y), and which is

an exponential of its argument, viz.

6



BOo,]:
= exp D

By combining Eqns. 13 and 47 under steady-state conditions,
one obtains

D,, = (1 - b) IS[ (48)

1+ In[l+ A-L_]

as the constraint equation for steady-state drag strength.

The first theoretical restriction requires the drag strength

to be positive valued in the virgin state, as defined in Eqn. 14,
but

Do = 0 (49)

which is not acceptable, because it is zero valued. The second

theoretical restriction requires the derivative of steady-state

drag strength with respect to stress to be non-negatlve and
finite valued, i.e.

dDn 1 - b

,,s, E1 +lnl+

x 1 A >_ 0 (50)

1+ l+ln 1+

which is acceptable. However, because the first restriction is

not satisfied, the yield strength model for f given in Eqn. 47
is inadmissible.

4. Hyperbolic sine models

Upon examining the constant structure data in Fig. 1,

one notices that the shape of this curve is much llke that of

steady-state creep curves where the stresses exceed power-law

breakdown, and which Garofalo (1963) modeled using a

hyperbolic sine raised to a power. We investigated (but do not

report the details of, because of space limitations) both drag

and yield-surface models where hyperbolic sines of these argu-

ments were applied, and which were then raised to a power

(akin to Garofalo's creep equation). None of these models

satisfy both of the theoretical restrictions necessary for them to

be admissible transient functions. This is not suprising, since

they reduce to power-law models as the stress tends toward

zero, and consequently, they share the same deficiences that

our first three power-law models possess.

5. A selection

Recent experimental results from Krempl (1987) on type

304 stainless steel at room temperature - presented here in Fig.

3 - indicate that isotropie hardening is beuer represented by a

Chaboche type yield strength parameter than by either a drag

strength or a Perzyna type yield strength parameter. Notice that

the changes in stress across the jumps in engineering strain-

TYPE 304 STAINLESS STEEL AT 21 °C
KREMPL (1987)

/
s.EA.,2oL/ -sAT°RATE°/

STRESS,
MPa

80

40

I
0 ,6 1,2 1.8 2.4

"ENGINEERING SHEAR

STRAIN, Y%

FIG. 3. Material strain-rate sensitivity is independent of har-
dening.

rate are, to a good approximation, the same in both the virgin

and saturated states. In other words, the observed rate depen-

dence is independent of hardening; a result that a Chaboche

type yield surface model would predict, but one that a drag

strength model or a Perzyna type yield strength model cannot

predict.

Quite frankly, the authors were initially suprised that

yield surface models (in particular, Eqns. 17, 37 and 43) would

be preferred over ones without a yield surface (since only Eqn.

39 is theoretically admissible). Curiously, only Chaboche type

yield surface models are theoretically admissible; Perzyna type

yield surface models are not, at least within the consuaints of

our hypothesis. Furthermore, these viscoplastic yield surface

models have been shown to reduce at steady state to creep

models where yield surfaces are not present.

Of the three yield strength models for the transient func-

tion f that are theoretically admissible, i.e. Eqns. 17, 37 and

43, the authors prefer the linear model over the convoluted

power-law and exponential models for reasons of simplicity

and ease in interpretation. The linear model has the simplest

overall form. Also, the linear and convoluted power-law

models are simpler than the exponential model when it comes

to constructing admissible evolution equations for the yield

strength, which is discussed at greater length in the next sec-

tion. The linear and convoluted power-law models also have a

simpler interpretation of what the drag strength is, and what its

approximate value should be. All three models predict roughly

the same response for the constant structure data of Gibeling

and Nix (1982), as illustrated in Fig. 4, because the Zener

parameter Z = Z,, [/'] is a strong function of its argument f,

whereas f is a relatively weak function of its argument in
these models. 2 This indicates that the internal state variables,
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HG. 4. Constant-structure creep predictions are, to a good
approximation, independent of one's choice for the transient function
/.

Bij and Y, have more to do with an accurate representation of
constant structure data than does the functional form for the

transient function f; therefore, the simplest function for f is

the best function for f, i.e. Eqn. 17,

f= /[<IS-BI-Y>]=<ISD -BI-Y>D

is the transient function that we select. One also observes in

Fig. 4 that the predicted inelastic strain-rate of all three models

deviates from the data by tending towards zero as the stress

approaches the yield surface (a value of about 2.2 MPa in

these models). Gibeling and Nix experimentally determined

that the back stress has a value between 1.4 and 2 MPa (and

therefore, b = 0.4); in fact, their datum point at 1.4 MPa

displayed in Figs. 1, 2 and 4 is associated with a negative or
reversed strain-rate.

IV. THERMAL RECOVERY

The internal state variables of viscoplasticity (back

stress, drag strength, and yield strength) evolve phenomenolog-

2 Here values used for the material c_nstants are:

A =29.9MPa, b =0.4, D =0.9A(1-b)= 16A MPa, m =2

and n = 4.4, where Norton's (1929) relationship /: = (o/A) _ is

used for the steady-state Zener parameter Zjs with e = 1.

ically via a hardening vs. recovery format (cf. Freed and Cha-

boche (1989)). By definition, steady state exists when the

effect due to hardening mechanisms is exactly cancelled out by

the effect due to recovery mechanisms for all the internal vari-

ables. In the discussion that follows, thermal recovery will be

the only recovery mechanism considered. In a future paper, the

authors will address the more subtle situation where both static

(thermally induced) and dynamic (strain induced) recovery

mechanisms are present. Our purpose here is to only illustrate

how one goes about specifying the recovery functions in such

a manner that the transient Zener parameter of Eqn. 7 reduces

to that of Eqn. 10 under conditions of steady state.

A hardening vs. thermal-recovery evolution format for

the back stress is given by
¢.

n - 3 ofT]RW,,,] B,j[ (51)ti;; = T2 _ 7 IBIJ

where H > 0 is the hardening modulus, and R > 0 is the

thermal recovery function. By definition, /_0 = 0 at steady

state, and consequently, the back stress is coaxial with the

applied stress at steady state, as required. It then follows from

Eqns. 5 to 11 and Eqn. 51, that R[Bij,_] = Z=[SI./I at steady

state. Hence, with a relationship existing between back stress

and deviatoric stress at steady state in the form of Eqn. I2, one

readily obtains the following expression for the thermal

recovery of back stress, i.e.

where the subscript ss can be dropped from I BI,j (which

would otherwise appear in the argument of Z=), because

steady state is only a special case, and therefore, the same

equation must be capable of handling transient situations as

well. This functional form for the thermal recovery of back

stress is required if our theory of viscoplasticity is to reduce to

the classical theory of creep under steady-state conditions.

A similar hardening vs. thermal-recovery evolution for-

mat for the drag and yield strengths is given by

/(=h [l¢l- 0[T] r[K]] (53)

where K _ {D,Y}, h > 0 is the hardening modulus, and

r > 0 is the thermal recovery function. By definition, K = 0

at steady state, and then from Eqns. 6 to 7, 9 to 11 and 53, it

follows that r [Ks,] = Z,, [Sij]. Or, as a more general expres-

sion, one obtains

r[Kl = Z,,[n[K]I (54)

where the functional form of nu[K] -= I SIIA depends upon

the functional form of the transient function f.

The function n[Y] is the same for both the linear and

convoluted power-law models that use the Chaboche type yield

surface, i.e. Eqns. 17 and 37, because both of these models

have the same relationship between stress and yield strength at

steady state, viz. Eqns. 18 and 38, and therefore

Y
= (55)

A(1 -b)-O

for these two models. This functional form for the thermal

recovery of yield strength is required if our selected theory of



viscoplasticity(i.e.thelinearmodelfor f) is to reduce to the

classical theory of creep under steady-state conditions.

If one were to develop a viscoplastic theory with a Cha-

boche type yield surface using the exponential model for f,

Eqn. 43, then the function n[Y] is not so easily obtained. To

determine its value, it is necessary to solve Eqn. 44 for I S I/A,

which does not appear to have a closed form solution. How-

ever, an approximate solution can be obtained by writing Eqn.
44 as

y = ax - D ln(l+x) (56)

where Y=Y,s, x=lSI/A-rt[Y] and a=A(1-b). We

can invert this expression by considering

1
x = --y + 8Ix] (57)

a

where _ is a small perturbation given by

5[x] = Dln(l + x) = Dln[ 1 + 1 ]]a a a y + 8Ix (58)

which can be determined to whatever degree of accuracy that

one desires v/a repeated substitution. Three or so repeated sub-

stitutions should give enough accuracy for engineering pur-

poses. The smaller the value of y, the larger the error is in

X----TL

Similarly, if one were to develop a viscoplastic theory

without a yield surface using the exponential model for f

given in Eqn. 39 (the only theoretically acceptable drag

strength model, herein), then the function _t[D] does not

appear to have a closed form solution, either. However, an

approximate inverse to Eqn. 40 can be obtained by first

expanding it in a Taylor series, i.e. y = a + I/2ax + • • •, and

then writing Eqn. 40 as

[ oxly = a + I/_ax - a + Wax ln(l+x)

= all + %x - 8[x]] (59)

where y =D,,, x=ISI/A -hiD] and a =A(1-b), and
where

5Ix] = 1 + %x x (60)
ln(1 + x)

which is a perturbation to the function y. Therefore by invert-

ing Eqn. 59, one obtains the desired expression

x = 2[ly- 1 + _[x]l (61)

which can be solved to whatever degree of accuracy that one

desires v/a repeated substitution of Eqn. 61 into Eqn. 60, like

the repeated substitution method of the previous paragraph.

The technique presented in this paragraph for taking the

inverse of a function can be used to obtain an approximate

inverse of almost any function where a closed form inverse
does not exist.

V. CONCLUSIONS

The objectives of this paper were to determine which

isotropic variable, i.e. drag strength or yield strength, is the

most appropriate for viscoplasticity, and to develop a visco-

plastic theory that reduces, in closed form, to the classical

theory of creep. Both of these objectives have been met.

Herein, we proposed a hypothesis that the transient

Zener parameter Z has the same functional form as the

steady-state Zener parameter Z,,, but with an argument f

instead of IS I/A such that f,, = IS I/A. Linear, power law,

exponential, and hyperbolic sine relationships have all been

considered as functional forms for the transient function f.

For each of these relationships, we considered a drag strength

model and two yield strength models (of both the Chaboche

and Perzyna types). These functions for f must satisfy two

restrictions to be theoretically admissible. Three of the Cha-

boche type yield strength models and one of the drag strength

models are shown to be theoretically admissible within the

constraints of our hypothesis.

Experimental results of Krempl (1987) suggest that

yield strength is the more physically correct description of iso-

tropic hardening. The three admissible yield strength models

are shown to all produce similar constant structure responses,

because the Zener parameter Z = Z,, [f ] is a strong function

of its argument f, whereas f is a relatively weak function

of its argument. This implies that the internal variables have

more to do with constant structure (or transien0 behavior than

does the functional form of f. For this reason, the simplest

function for f (a linear yield strength model) is selected as

being the best choice.

An important consequence of our hypothesis is that it
enables one to determine functional forms for the thermal

recovery functions in the evolution equations of the internal

state variables (i.e., the back stress, drag strength and yield

strength). These forms ensure that the viscoplastic theory

reduces to the classical theory of creep under steady-state con-
ditions.
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